Physical modeling of gas induced bath flow in drained aluminum reduction cell
(School of Metallurgical Science and Engineering,
Central South University, Changsha 410083, China)
Central South University, Changsha 410083, China)
Abstract: A room temperature physical model was used to study the bubble behavior and gas induced bath circulation in a drained aluminum reduction cell. By passing compressed argon through the penetrated Plexiglas box bottom plate immersed in water, gas evolution at the anode bottom surface was simulated. Bubble behavior and liquid flow field were studied and analysis was presented. Bath secondary recirculation was observed in the interpolar gap not the net rising flow as expected. Liquid driven by the bubbles forms small vortices along the interpolar gap with small mean and turbulent velocities and accordingly poor mass transfer. Secondary recirculation also exists between the slot and interpolar gap, part of the flow in the interpolar gap go to the slot with the bubbles and fluid at the bottom of the slot enters the interpolar gap directly without going to the center channel. The existence of the fluid secondary recirculation is very unfavorable to the alumina dissolution and dispersion. Increasing the anode tilt or gas flow rate, or decreasing the anode-cathode distance can make the secondary recirculation in the interpolar gap weak, however, will intensify the secondary recirculation between the slot and interpolar gap.
Key words: bubble behavior; flow pattern; physical model; drained aluminum reduction cell