Formation mechanism of amorphous Ni-Fe-P alloys by electrodeposition
(College of Mechanical Engineering, Fuzhou University, Fuzhou 350002, China)
Abstract: The formation mechanism of the amorphous Ni-Fe-P coating was studied by analysis of the forming thermodynamics, dynamics, and crystallography of the amorphous alloy. The results show that, in the initial stage of deposition a thin “crystal epitaxial growth” layer first forms, and then transforms to amorphous gradually. The cross section in Ni-Fe-P coatings by electrolytic etching exhibits a banded structure of alternate dark and light bands. It is proposed that the banded structure is caused by a change in the P content with thickness, which is due to alternated depletion and enrichment of [OH-] in the diffusion layer resulting from the generation and evolution of hydrogen gas. The amorphous Ni-Fe-P coating will be formed in proper composition, high nucleation rate and strongly hindered growth of the crystal nucleus. Amorphous Ni-Fe-P alloys form as islands, and grow up by layer.
Key words: Ni-Fe-P Coating; amorphous alloy; formation mechanism; electrodeposition