ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 19    Special 3    December 2009

[PDF]    [Flash]
Microstructure evolution and mechanical properties of
1 000 MPa cold rolled dual-phase steel
ZHAO Zheng-zhi(赵征志), JIN Guang-can(金光灿), NIU Feng(牛 枫), TANG Di(唐 荻), ZHAO Ai-min(赵爱民)
 
(Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China)
Abstract: The microstructure evolution of 1 000 MPa cold rolled dual-phase (DP) steel at the initial heating stages of the continuous annealing process was analyzed. The effects of different overaging temperatures on the microstructures and mechanical properties of 1 000 MPa cold rolled DP steel were investigated using a Gleeble−3500 thermal/mechanical simulator. The experimental results show that ferrite recovery and recrystallization, pearlite dissolution and austenite nucleation and growth take place in the annealing process of ultra-high strength cold rolled DP steel. When being annealed at 800 ℃ for 80 s, the tensile strength and total elongation of DP steel can reach 1 150 MPa and 13%, respectively. The microstructure of DP steel mainly consists of a mixture of ferrite and martensite. The steel exhibits low yield strength and continuous yielding which is commonly attributed to mobile dislocations introduced during cooling process from the intercritical annealing temperature.
Key words: cold rolled dual-phase steel; microstructure evolution; recrystallization; mechanical property; overaging temperature
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9