ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 20    No. 1    January 2010

[PDF]    [Flash]
Effect of step-quenching on microstructure of aluminum alloy 7055
LIU Sheng-dan(刘胜胆)1,2, ZHANG Yong(张 勇)1,2, LIU Wen-jun(刘文军)1,2,
DENG Yun-lai(邓运来)1,2, ZHANG Xin-ming(张新明)1,2
(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083, China
)
Abstract: The effect of step-quenching on the microstructure of aluminum alloy 7055 after artificial aging was studied by hardness testing and transmission electron microscopy (TEM). Step-quenching leads to decomposition of solid solution and heterogeneous precipitation of equilibrium phase mainly on dispersoids and at grain boundaries; thus lower hardness after aging. Prolonging isothermal holding at 415 ℃ results in coarser and more spaced η phase particles at grain boundaries with wider precipitates free zone, and lower density of larger η′ hardening precipitates inside grains after aging. Isothermal holding at 355 ℃ results in heterogeneous precipitation of η phase both on dispersoids and at grain boundaries. Isothermal holding at 235 ℃ results in heterogeneous precipitation of η phase first, and then S phase. Precipitates free zones are created around these coarse η and S phase particles after aging. Prolonging isothermal holding at these two temperatures leads to fewer η′ hardening precipitates inside grains, larger and more spaced η phase particles at grain boundaries and wider grain boundary precipitates free zone after aging.
Key words: quenching; aluminum alloy 7055; heterogeneous precipitation; η phase; precipitates free zone
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9