ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 17    Special 1    November 2007

[PDF]    [Flash]
Orthogonal experiment and microstructure analysis on TiC-TiB2 multi-phase ceramic coating prepared by SHS reactive spraying
DU Xin-kang(杜心康)1, 2, WANG Jian-jiang(王建江)1, WANG Tian-min(王天民)2,
LIU Hong-wei(刘宏伟)1, LI Wei-bo(李伟波)1
(1. Advanced Materials Institute, Mechanical Engineering College, Shijiazhuang 050003, China;
2. Center of Condensed Matter Physics and Material Physics, Beihang University, Beijing 100083, China
)
Abstract: Utilizing self-propagating high-temperature synthesis (SHS) reactive spraying technology, the feeding self-combustion agglomerated particles composed of Ti, B4C and C powders, TiC-TiB2 multi-phase ceramic coatings were prepared on the steel substrates. Orthogonal experiment was carried out to optimize the spraying parameters. The phase component and microstructure of the coating fabricated at the optimized parameters were studied by XRD and SEM. The reactive mechanism in flying agglomerated particles was discussed. The optimized conditions, spraying distance of 220 mm, powders delivering gas pressure of 0.3 MPa and preheating temperature of 240 ˚C to sprayed particles, were obtained from orthogonal experiment. For the coating, porosity of 2.5% and HV 1 595 are achieved under the optimized parameters. The coatings are mainly composed of TiC0.3N0.7, TiB2 and a little TiO2. The SEM analysis shows the morphology of TiC0.3N0.7 matrix in which the fine granular TiB2 crystals evenly disperse. It is concluded that, as solo reactive units, the agglomerated particles would finally form into the coatings after going through four successive stages in the flame, which are, respectively, pregnant reaction, flight combustion, collision and structure transformation and solidification. The solid diffusion and dissolution-precipitation are the two mechanisms to control the synthesis reaction.
Key words: TiC-TiB2 ceramic coating; SHS reactive spraying; orthogonal experiment; reactive mechanism
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9