ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 20    No. 9    September 2010

[PDF]    [Flash]
Microstructure refinement of AZ31 alloy solidified with pulsed magnetic field
WANG Bin(汪 彬)1, YANG Yuan-sheng(杨院生)2, SUN Ming-li(孙明礼)1
(1. College of Engineering, Zhejiang Normal University, Jinhua 321004, China;
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
)
Abstract: The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy. The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 mm. By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification. The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited. In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.
Key words: AZ31 magnesium alloy; grain refinement; pulsed magnetic field; solidified microstructure
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9