ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 21    No. 3    March 2011

[PDF]    [Flash]
Shear hydrophobic flocculation and flotation of ultrafine Anshan
hematite using sodium oleate
YIN Wan-zhong, YANG Xiao-sheng, ZHOU Da-peng, LI Yan-jun, LÜ Zhen-fu
(School of Resource and Civil Engineering, Northeastern University, Shenyang 110004, China)
Abstract: Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10−4  mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential.
Key words: sodium oleate; ultrafine hematite; shear hydrophobic flocculation; extended DLVO theory
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9