ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 22    No. 12    December 2012

[PDF]    [Flash]
Microstructural characteristics of Al-20Si-2Cu-0.4Mg-1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment
WU Shu-sen1, ZHONG Gu1, AN Ping1, WAN Li1, H. NAKAE2
(1. State Key Laboratory of Materials Processing and Die & Mould Technology,
Huazhong University of Science and Technology, Wuhan 430074, China;
2. Department of Materials Science and Engineering, Waseda University, Tokyo 169, Japan
)
Abstract: A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al-Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigated. Besides the microstructures of primary Si particles and α(Al)+β-Si eutectic phases, non-equilibrium α(Al) particles or dendrites are discovered in the microstructure of the Al-20Si-2Cu-0.4Mg-1Ni alloy. Rapid cooling generated by squeeze casting process rather than the pressure is considered as the main reason for the formation of non-equilibrium α(Al) phase. The sound pressurizing effect of ultrasonic vibration also enables the non-equilibrium α(Al) phases to form above eutectic temperature and grow into non-dendritic spheroids in the process of semi-solid slurry preparation. Non-equilibrium α(Al) phases formed in the hypereutectic Al-Si alloy with ultrasonic vibration treatment, consist of round α(Al) grains formed above the eutectic temperature and a small amount of fine α(Al) dendrites formed under the eutectic temperature. The volume fraction of primary Si particles is decreased significantly by the effect of ultrasonic vibration through increasing the solid solubility of Si atoms in α(Al) matrix and decreasing the forming temperature range of primary Si particles. The average particle diameter and the volume fraction of primary Si particles in microstructure of the swash-plate by rheo-squeeze casting are 24.3 μm and 11.1%, respectively.
Key words: Al-Si alloy; hypereutectic; ultrasonic vibration; squeeze casting; non-equilibrium α(Al); semi-solid slurry
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9