Abnormal resistivity and viscosity behavior in Sb-rich Pb-Sb melts
(Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan 250061, China)
School of Materials Science and Engineering, Shandong University, Jinan 250061, China)
Abstract: Electrical resistivity and viscosity of Pb-Sb alloys are measured to investigate Peierls distortion behavior in the melts. In Pb30Sb70, Pb20Sb80, and Pb10Sb90 melts, temperature dependence of resistivity deviates from linear dependence during cooling. At 663 °C, different trends in isothermal behavior between experimental and theoretical resistivities, are interpreted as the existence of Peierls distortion in Sb-rich melts. In Pb30Sb70 and Pb20Sb80 melts, abnormal viscosity results verify the existence of abnormal structure transition, which is attributed to the formation of large Sb clusters with Peierls distortion. In undercooled liquid Pb20Sb80, minute resistivity coefficient and quadratic resistivity behavior are interpreted as the rapid increase of cluster size of Sb clusters with Peierls distortion, which provides preferential nucleation sites for higher structure similarity to the crystalline and lower liquid-solid interfacial energy.
Key words: electrical resistivity; viscosity; Peierls distortion; undercooled liquid; Pb-Sb alloys