ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 16    Special 2    September 2006

[PDF]    
Continuous and directional solidification technology of titanium alloys with cold crucible
陈瑞润1,丁宏升2,毕维生2,傅恒志2,郭景杰3
(1.哈尔滨工业大学 材料科学与工程学院,哈尔滨 1500012.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China3.黑龙江省哈尔滨市哈尔滨工业大学材料科学与工程学院)
Abstract: The experiments of continuous and directional solidification of titanium alloys with cold crucible were carried out in a multifunctional electromagnetic cold crucible apparatus. Parameters and factors influencing the surface crack and macrostructure of titanium alloy ingots were studied. The mechanism of the parameters and factors influencing the surface crack and macrostructure of the ingots were interpreted. The results show that the surface cracks of the prepared ingots decrease with the increase of the input power from 50 to 60 kW or with the increase of the coil turns from 3 to 5 circles. The surface cracks increase with the increase of withdrawal velocity from 3 to 5 mm/min or the height of the primer from 2 to 3 cm, then decrease with the increase of withdrawal velocity from 5 to 8.7 mm/min or the height of the primer from 3 to 4 cm. Coil turns is the most important one in all parameters effect on the surface crack, the input power is more important, then the withdrawal velocity is important and the height of the primer is the least important. Withdrawal velocity is the most important factor affecting the macrostructure, and effects of other factors on macrostructure is slight. With the decrease of velocity from 8.7 to 0.5 mm/min, the quantity of grains reduces, the grain orientation degree becomes small, and the solidification fronts change from concave to plane to convex. The ingot can be directional solidified at velocity of 1 mm/min. The ingot with free surface crack and directional macrostructure is prepared under definite conditions.
Key words: Ti6Al4V alloys; cold crucible; continuous casting; directional solidification
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9