ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 16    Special 1    June 2006

[PDF]    
Theoretical and experimental investigation on giant magnetoresistive materials with amorphous ferromagnetic layer
文岐业,张怀武,宋远强,蒋向东
(School of Microelectronic and Solid-state Electronic,University of Electronic Science and Technology of China, Chengdu 610054, China)
Abstract: Pseudo-spin-valve (PSV) sandwiches using amorphous CoNbZr alloy as soft magnetic layer were fabricated by magnetron sputtering. The giant magnetoresistance (GMR) and its dependence on the thickness of magnetic layer were investigated. Anti-parallel magnetization alignments were observed in the samples with very thin CoNbZr thickness (2?4 nm) and a maximum GMR ratio of 6.5% was obtained. The Camley-Barnas semiclassical model was extended for amorphous layer based magnetic sandwiches by considering that the mixed layers exist between the ferromagnetic and nonmagnetic layer. The calculated results agree with the experimental results very well, indicating that the new model gives a more realistic picture of the physical processes that take place in the magnetic sandwiches. Moreover, the calculated results for amorphous sandwiches also clarify that the occurrence of maximum GMR at very small thickness of amorphous layer is ascribed to the short mean-free-path in amorphous materials.
Key words: giant magnetoresistance; pseudo-spin-valve; amorphous ferromagnetic layer; Camley-Barnas model
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9