ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 16    Special 1    June 2006

[PDF]    
Preparation and oxygen-sensing properties of TiO2 porous thin films on alumina substrate
李明利1,徐明霞1,李岩2
(1.School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China2.School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China)
Abstract: The titanium dioxide sols were synthesized with tetrabutyl titanate as precursor, diethanolamine(DEA) as complexing agent , polyethylene glycol (PEG) as organic template. The porous films were prepared by sol-gel method. The structures and morphology of the titanium dioxide porous films were characterized by FE-SEM. The formation mechanism of TiO2 porous films and the relation between the porous structure and oxygen-sensing properties of TiO2 films were studied. Ordered structure was formed by assembling between TiO2 colloid particles and the template molecules. PEG molecules acted on TiO2 colloid particles by hydrogen bond and bridge oxygen. The porous structure was formed after the organic template was decomposed when calcining the films. The diameter, amount and distribution of the pores in the films are related with the content of PEG.. The pore diameter increases with increasing of content of PEG and the pore density reaches the maximum at certain content. Oxygen-sensitivity and response speed of porous TiO2 films are improved compared with films without pores. Both the sensitivity and response speed increase with the increasing of pore diameter and pore density. Oxygen-sensitivity reaches 3 order of magnitude at 800 ℃. Its response time from H2/N2 to O2/N2 atmosphere and vice versa is about 0.11 s and 0.12 s respectively. Although the sensitivity and response speed increase, the resistance-temperature properties of porous films are not notably improved with the increasing of the content of PEG.
Key words: TiO2 porous thin film; organic template; sol-gel method; oxygen-sensitivity
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9