ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 16    Special 1    June 2006

[PDF]    
Water-absorptivity and mechanical behaviors of PTFE/PA6 and PTFE/PA66 blends
赵荣国1,罗文波1,肖华明2,吴国忠3
(1.Key Laboratory for Advanced Materials and Rheological Properties of Ministry of Education, Xiangtan University, Xiangtan 411105, China2.Institute of Rheological Mechanics, Xiangtan University, Xiangtan 411105, China3.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)
Abstract: The effects of polytetrafluoroethylene (PTFE) content on water-absorptivity, tensile strength, flexural strength, and notched impact strength of polytetrafluoroethylene/polyamide 6 (PTFE/PA6) and polytetrafluoroethylene/polyamide 66 (PTFE/PA66) blends were investigated by water immersion test, uniaxial tensile test, three-point test, and Charpy impact fracture test. The water-absorptivity in the blend decreases with increasing PTFE content, which indicates that the PTFE phase restrains the polyamide phase from water absorption. For water-free blends, the addition of PTFE causes a reduction in tensile strength, while for water-absorbed PTFE/PA6 blends, the tensile strength increases with increasing PTFE. Simultaneously, the absorbed water improves the elongation, but results in a notable reduction in flexural strength of the blends. Although the addition of PTFE causes a reduction in notched impact strength of the blends, as compared to pure polyamide, the absorbed water has little effects on the notched impact strength of the blends. Finally, the effects of temperature and loading frequency on complex viscosity parameters of PTFE/PA6 and PTFE/PA66 melts were tested. It is found that the complex viscosity of PTFE/PA6 melt is reversed with increasing temperature and shear velocity, but that of PTFE/PA66 melt increases approximately in exponential form with increasing temperature. To fill polyamide with suitable mass percentage of PTFE can effectively reduce the viscosity of blend, and as a result, the molding and processing properties are improved.
Key words: PTFE/PA6 blends; PTFE/PA66 blends; water absorptivity; strength; complex viscosity
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9