ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 23    No. 5    May 2013

[PDF]    [Flash]
Preparation and oxidation behavior of a novel CeO2-modified chromizing coating
Jian-feng SUN, Yue-bo ZHOU, Hai-jun ZHANG
(College of Materials Science and Engineering, Heilongjiang Institute of Science and Technology, Harbin 150027, China)
Abstract: By using CeO2 particles instead of part of Al2O3 particles as filler, the CeO2 was successfully entrapped into the outer layer of the chromizing coatings on the as-deposited nanocrystalline (NC) and microcrystalline (MC) Ni films using a conventional pack-cementation method at 800 °C. For comparison, chromizing was also performed under the same condition on MC Ni film using Al2O3 as filler without CeO2 particles. SEM/EDX and TEM results indicate that the refinement of Ni grain and CeO2 entrapped into the chromizing coatings refine the grain of the chromizing coating. Oxidation at 900 °C indicates that compared with the CeO2-free chromizing coating, the CeO2-dispersed chromizing coating exhibits an increased oxidation resistance. For the CeO2-dispersed chromizing coating, the refinement of Ni grain size significantly decreases the transient-oxidation scaling rate of the chromizing coatings. Together with this, the CeO2-dispersed chromizing coating formed on NC Ni exhibits a better oxidation resistance.
Key words: chromizing; coating; CeO2; reactive element effect; oxidation behavior
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9