Electrochemical hydriding performance of Mg-TM-Mm (TM=transition metals, Mm=mischmetal) alloys for hydrogen storage
(Department of Metals and Corrosion Engineering, Institute of Chemical Technology,
Prague Technická 5, 166 28 Prague 6, Czech Republic)
Prague Technická 5, 166 28 Prague 6, Czech Republic)
Abstract: Eighteen as-cast binary Mg-Ni, Mg-Mm and ternary Mg-Ni-Mm and Mg-Ni-TM (TM=transition metals (Cu, Zn, Mn and Co); Mm = mischmetal containing Ce, La, Nd and Pr) alloys were hydrided by an electrochemical process to determine the alloys with the most potential for electrochemical hydrogen storage. The alloys were hydrided in a 6 mol/L KOH solution at 80 °C for 480 min and at 100 A/m2. To assess the electrochemical hydriding performance of alloys, maximum hydrogen concentrations, hydrogen penetration depths and total mass of absorbed hydrogen in the alloys were measured by glow discharge spectrometry. In addition, the structures and phase compositions of the alloys both before and after hydriding were studied by optical and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. It was determined that the highest total amount of hydrogen was absorbed by the Mg-25Ni-12Mm and Mg-26Ni (mass fraction, %) alloys. The maximum hydrogen concentrations in the Mg-25Ni-12Mm and Mg-26Ni alloys were 1.0% and 1.6%, respectively. The main hydriding product was the binary MgH2 hydride, and the ternary Mg2NiH4 hydride was also detected in the Mg-25Ni-12Mm alloy. The electrochemical hydriding parameters achieved are discussed in relation to the structures of alloys, alloying elements and hydriding mechanisms.
Key words: hydrogen storage; magnesium; nickel; rare earths; electrochemical hydriding