ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 23    No. 7    July 2013

[PDF]    [Flash]
Formation mechanism and oxidation behavior of MoSi2-SiC protective coating prepared by chemical vapor infiltration/reaction
Zi-bo HE, He-jun LI, Xiao-hong SHI, Qian-gang FU, Heng WU
(State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China)
Abstract: In order to protect C/C composites from oxidation, SiC-MoSi2 composite coating was synthesized by chemical vapor infiltration /reaction (CVI/CVR) technology. A porous Mo layer was prefabricated on SiC coated C/C composites, and then MoSi2 and SiC were subsequently prepared in a CVI /CVR process using methyltrichlorosilane (MTS) as precursor. The deposition and reaction mechanism of the MoSi2-SiC composite coating was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The oxidation behavior of SiC-MoSi2 coated specimens was tested. The results show that the porous Mo layer can be densified with SiC phase decomposed from MTS, and transformed into SiC-MoSi2 by reacting with MTS as well. A dense composite coating was prepared with optimized deposition parameters. The coated specimen exhibits a good oxidation resistance with a little mass loss of 1.25% after oxidation at 1500 °C for 80 h.
Key words: MoSi2-SiC coating; deposition temperature; initial partial pressure of MTS; oxidation resistance
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9