ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 23    No. 8    August 2013

[PDF]    [Flash]
Formation characteristic of Ca-P coatings on magnesium alloy surface
Guang-yi LIU1, Sha-wei TANG1, Chuan WANG1, Jin HU1, De-chao LI2
(1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. School of Stomatology, Jiamusi University, Jiamusi 154002, China
)
Abstract: A chemical method was used to deposit dicalcium phosphate dehydrate coatings on AZ91 magnesium alloy. The aim was to improve the biodegradation behavior of magnesium alloy in a simulated body fluid. The microstructures of the coating before and after immersion in the simulated body fluid were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that the dicalcium phosphate dehydrate coatings exhibited two morphologies during the pre-calcification process. The titration speed of the pre-calcification process had great influence on the morphologies of the pre-calcification coatings. As the soaking time increased, the diffraction peaks of dicalcium phosphate dehydrate disappeared and hydroxyapatite precipitated on the coated substrate surfaces. This indicates the dissolution of dicalcium phosphate dehydrate during the immersion process. The structures of the dicalcium phosphate dehydrate coatings and the formation mechanisms of the hydroxyapatite coatings were investigated in detail.
Key words: magnesium alloy; Ca-P coatings; microstructure; simulated body fluid
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9