Development of transition condition for region with variable-thickness in isothermal local loading process
(1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
2. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)
2. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)
Abstract: Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost and short cycle. The beveling transition pattern is well used for variable-thickness region of billet (VTRB) due to its simple and ample range of transition condition. The transition condition development in the local loading process has a significant influence on dynamic boundary of unrestricted portion of VTRB. With the help of reasonable assumptions, a mathematical model of transition condition development was established by theoretical analysis. The predicted results for local loading process of rib-web component using the established model were compared with the numerical and experimental ones, and the results indicated that the model of transition condition development is reasonable. Using the established model could deal with the dynamic boundary of unrestricted portion of VTRB well, and the model is suitable for the analysis of metal flow and cavity fill in local loading process of multi-ribs component.
Key words: rib-web component; isothermal local loading; unequal-thickness billet; variable-thickness region of billet; beveling transition pattern; titanium alloy