ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 24    No. 6    June 2014

[PDF]    [Flash]
Effect of cooling rate on solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy
Rui CHEN, Yu-feng SHI, Qing-yan XU, Bai-cheng LIU
(Key Laboratory for Advanced Materials Processing Technology of Ministry of Education,
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
)
Abstract: The effects of cooling rate on the solidification parameters and microstructure of Al-7Si-0.3Mg-0.15Fe alloy during solidification process were studied. To obtain different cooling rates, the step casting with five different thicknesses was used and the cooling rates and solidification parameters were determined by computer-aided thermal analysis method. The results show that at higher cooling rates, the primary α(Al) dendrite nucleation temperature, eutectic reaction temperature and solidus temperature shift to lower temperatures. Besides, with increasing cooling rate from 0.19 °C/s up to 6.25 °C/s, the secondary dendritic arm spacing decreases from 68 μm to 20 μm, and the primary dendritic volume fraction declines by approximately 5%. In addition, it reduces the length of Fe-bearing phase from 28 μm to 18 μm with a better uniform distribution. It is also found that high cooling rates make for modifying eutectic silicon into fibrous branched morphology, and decreasing block or lamella shape eutectic silicon.
Key words: aluminium alloys; cooling rate; thermal analysis; solidification parameters; microstructure
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9