ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 24    No. 7    July 2014

[PDF]    [Flash]
Experiments and modeling of double-peak precipitation hardening andstrengthening mechanisms in Al-Zn-Mg alloy
Xiao-wu NIE1,2, Li-jun ZHANG1, Yong DU1
(1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
2. School of Locomotive and Rolling Stock, Hunan Vocational College of Railway Technology, Zhuzhou 412000, China
)
Abstract: The aim of the present work is to develop a model for simulating double-peak precipitation hardening kinetics in Al-Zn-Mg alloy with the simultaneous formation of different types of precipitates at elevated temperatures based on the modified Langer–Schwartz approach. The double aging peaks are present in the long time age-hardening curves of Al-Zn-Mg alloys. The physically-based model, while taking explicitly into account nucleation, growth, coarsening of the new phase precipitations and two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing), was used for the analysis of precipitates evolution and precipitation hardening during aging of Al-Zn-Mg alloy. Model predictions were compared with the measurements of Al-Zn-Mg alloy. The systematic and quantitative results show that the predicted hardness profiles of double peaks via adding a shape dependent parameter in the growth equation for growth and coarsening generally agree well with the measured ones. Two strengthening mechanisms associated with particle-dislocation interaction (shearing and bypassing) were considered operating simultaneously in view of the particle size-distribution. The transition from shearing to bypassing strengthening mechanism was found to occur at rather early stage of the particle growth. The bypassing was found to be the prevailing strengthening mechanism in the investigated alloys.
Key words: Al-Zn-Mg alloy; double-peak precipitation; precipitation hardening; modelling; mechanical properties; strengthening mechanisms
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9