Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium
(1. School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China)
2. Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China)
Abstract: The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy (XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite (CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite (CuS) and cupric ions, and the formed covellite (CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite (CuS), and the initial reduction reaction was the rate-limiting step.
Key words: chalcopyrite; bornite; electrochemical dissolution; acid culture medium; bioleaching