Self-heating tendency evaluation of sulfide ores based on nonlinear multi-parameters fusion
(1. Key Laboratory of Mine Thermo-motive Disaster and Prevention of Ministry of Education,
Liaoning Technical University, Fuxin 123000, China;
2. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
3. School of Nuclear Resources Engineering, University of South China, Hengyang 421001, China)
Liaoning Technical University, Fuxin 123000, China;
2. School of Resources and Safety Engineering, Central South University, Changsha 410083, China;
3. School of Nuclear Resources Engineering, University of South China, Hengyang 421001, China)
Abstract: In order to reveal the nonlinear dynamics characteristics of unsteady self-heating process of sulfide ores, nine different kinds of sulfide ore samples from a pyrite mine in China were taken as experimental materials and their self-heating characteristics were measured in laboratory. Furthermore, the measured temperature was studied by integrating wavelet transform, nonlinear characteristic parameters extraction and fuzzy comprehensive evaluation. The results indicate that only the ore samples 1, 2, 6 and 9 have obvious self-heating phenomenon, and their self-heating initiative temperatures are 220 °C, 239 °C, 220 °C and 220 °C, respectively, which means that they are difficult to produce self-heating under normal mining conditions. The correlation dimension of self-heating process is fraction and the maximum Lyapunov exponent is positive, which means that it is feasible to study the self-heating process based on chaotic dynamics theory. The nonlinearities of self-heating process of these four samples (ore samples 1, 2, 6 and 9) are 0.8227, 0.7521, 0.9401 and 0.8827 respectively and the order of the samples according to these results is: sample 6, sample 9, sample 1, sample 2, which is consistent with the measured results of self-heating characteristics. Therefore, the nonlinearity method can be used to evaluate the self-heating tendency of sulfide ores, and it is an effective verification of the reliability of measured results.
Key words: sulfide ores; self-heating process; nonlinear characteristic parameter; nonlinearity; self-heating tendency