ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 25    No. 10    October 2015

[PDF]    [Flash]
Effect of indentation size and grain/sub-grain size onmicrohardness of high purity tungsten
Guang-yu LIU, Song NI, Min SONG
(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
Abstract: Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures. The grain boundary effect and indentation size effect were explored. The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor. The results show that the scaling factor is barely correlated with the grain/sub-grain size. The interaction between the plastically deformed zone (PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths. Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size, and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.
Key words: high purity tungsten; indentation hardness; indentation size effect; grain boundary; plastic deformation zone
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9