ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 26    No. 2    February 2016

[PDF]    [Flash]
Deformation behavior and constitutive model for dual-phase Mg-Li alloy at elevated temperatures
Guo-bing WEI1, Xiao-dong PENG1, Fa-ping HU1, Amir HADADZADEH2, Yan YANG1, Wei-dong XIE1, Mary A. WELLS2
(1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
2. Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
)
Abstract: In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in ranges of elevated temperatures (423-573 K) and strain rates (0.001-1 s-1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg-9Li-3Al-2Sr alloy during high temperature deformation.
Key words: constitutive model; Mg-Li alloy; plastic instability; Zener-Hollomon parameter
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9