ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 26    No. 5    May 2016

[PDF]    [Flash]
Effect of milling energy on preparation of Cu-Cr/CNT hybrid nano-composite by mechanical alloying
M. MASROOR, S. SHEIBANI, A. ATAIE
(School of Metallurgy and Materials Engineering, College of Engineering,
University of Tehran, P. O. Box 11155-4563, Tehran 13145-1318, Iran
)
Abstract: Production of Cu-Cr/carbon nanotube (CNT) hybrid nano-composite by wet and dry milling processes at three different levels of milling energy was investigated in order to study the effect of milling energy in two different media on dispersion of CNTs, and preparation of the nano-composite. The structural evolution and solid solution formation were evaluated by X-ray diffraction technique. The microstructure was characterized by scanning electron microscopy and transmission electron microscopy. Also, the mechanical properties were measured by microhardness test. The mean crystallite size was in the range of 20-63 nm depending on milling medium and energy. CNTs dispersion is a function of milling energy. According to FESEM images and microhardness results, it can be concluded that wet milling is more applicable in dispersing CNTs homogeneously in comparison to dry milling. It was also found that wet milling at higher milling energies can be a beneficial method of producing the homogeneous hybrid nano-composite with the least damages introducing on CNTs because of the higher microhardness which can be attributed to better dispersion of less damaged CNTs. Compared with crystallite size changes, CNTs dispersion and damages were considerably more effective on hardness.
Key words: carbon nanotubes; copper; nano-composite; mechanical alloying
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9