ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 26    No. 7    July 2016

[PDF]    [Flash]
Microstructural characterization and dry sliding wear behavior of spark plasma sintered Cu-YSZ composites
Jafar MIRAZIMI, Parvin ABACHI, Kazem PURAZRANG
(Department of Materials Science and Engineering, Sharif University of Technology, Tehran, P. O. Box 11155-9466, Iran)
Abstract: In the present study, yttria stabilized zirconia (YSZ) reinforced Cu matrix composite specimens were produced by spark plasma sintering (SPS). For comparison, pure Cu specimen was also produced in the same conditions. The effect of particles content on microstructure, relative density, electrical conductivity, and Vickers hardness was evaluated. The pin-on-disk test was also performed to determine dry sliding wear behavior of specimens under different wear conditions. After sliding wear tests, the worn surfaces were examined by field emission scanning electron microscopy (FE-SEM). Microstructural study showed satisfactory distribution of reinforcement particles in copper matrix. The relative density up to 95% was obtained for all specimens. By increasing YSZ content from 0 to 5% (volume fraction), the electrical conductivity of specimens decreased from 99.2%IACS to 65%IACS, correspondingly. The hardness of Cu-5%YSZ composite specimen was two times greater than that of pure copper. The volume loss and wear rate of pure Cu specimen were 1.48 mm3 and 1.5×10-3 mm3/m under 50 N applied load and 1000 m sliding distance. However, for composite containing 5% YSZ particles, these values dropped to 0.97 mm3 and 0.9×10-3 mm3/m, respectively. Moreover, the friction coefficient of specimens was changed from 0.6 to 0.4. The worn surface and debris observation indicate local plastic deformation and delamination as dominant wear mechanisms for pure copper, while oxidation and ploughing for composite specimen. Accordingly, it can be concluded that the Cu-YSZ composite could be a good candidate for the electrical contact applications in relays, contactors, switches and circuit breakers requiring good electrical and thermal conductivity and capability to resist wearing.
Key words: copper matrix composite; spark plasma sintering; microstructure; electrical conductivity; sliding wear
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9