ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 27    No. 12    December 2017

[PDF]    [Flash]
Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling
H. ZARE TAVAKOLI1, M. ABDOLLAHY1, S. J. AHMADI2, A. KHODADADI DARBAN1
(1. Mining Engineering Department, Tarbiat Modares University, Tehran 14115116, Iran; 2. Nuclear Science and Technology Research Institute, Tehran 113658486, Iran)
Abstract: This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans. Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design. Four significant variables ([Fe2+]initial, pH, aeration rate and inoculation percent) were selected for the optimization studies. The effect of these variables on uranium bioleaching was studied using a central composite design (CCD). The optimal values of the variables for the maximum uranium bioleaching recovery (90.27±0.98)% were as follows: [Fe2+]initial=2.89 g/L, aeration rate 420 mL/min, pH 1.45 and inoculation 6% (v/v). [Fe2+]initial was found to be the most effective parameter. The maximum uranium recovery from the predicted models was 92.01%. This value was in agreement with the actual experimental value. The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals. By using optimal conditions, uranium bioleaching recovery is increased at column and jarosite precipitation is minimized. The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.
Key words: column bioleaching; uranium ore; screening; optimization; kinetic model; Acidithiobacillus ferrooxidans
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9