ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 28    No. 5    May 2018

[PDF]    [Flash]
Quantitative analysis of orange peel during tension of 6063 alloy spun tubes
Yang CAI1, Xiao-song WANG1,2, Shi-jian YUAN1,2
(1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China)
Abstract: Severe surface roughening during plastic deforming of aluminum alloy parts can produce “orange peel” defects. To analyze “orange peel” of 6063 aluminum alloy tube quantificationally, the tensile tests of trapezoidal specimens were carried out. The tubes with different grain sizes were obtained by spinning and subsequent annealing heat treatment. The macroscopical behavior of surface roughening was characterized by surface roughness Ra using a laser scanning confocal microscope. The corresponding microscopic behavior was reflected by microstructures of specimens and in-situ observation using electron back-scattered diffraction (EBSD). The obtained results show that the surface roughness increased firstly with increasing strain and then decreased slightly. There was a critical strain for aluminum alloy tube, below which “orange peel” defect would not occur. For the tube with a mean grain size of 80, 105, 130 and 175 μm, the critical strains were 10.17%, 5.74%, 3.15% and 1.62%, respectively. Meanwhile, the surface roughening behavior was produced by serious inhomogeneous deformation between grains as strain increased, and was aggravated as the grain size increased due to the larger local deformation in larger grains.
Key words: 6063 aluminum alloy; surface roughening; tensile deformation; spinning; orange peel
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9