ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 28    No. 10    October 2018

[PDF]    [Flash]
Comparative study on hot rolling of Cu-Cr and Cu-Cr-CNT nanocomposites
S. SHAKIB HAMEDAN, M. ABDI, S. SHEIBANI
(School of Metallurgy and Materials Engineering, University of Tehran, P. O. Box 11155-4563, Tehran 13145-1318, Iran)
Abstract: Cu-1%Cr (mass fraction) and Cu-1%Cr-5% carbon nanotube (CNT) (mass fraction) nanocomposite powders were produced by mechanical alloying and consolidated by hot pressing. Then, nanocomposites were hot-rolled by the order of 50% reduction at 650 °C. The structure and microstructure were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Relative density, microhardness, thermal stability, electrical and wear properties were evaluated. Compared to the Cu-Cr sample, the relative density of Cu-Cr-CNT sample is greatly improved from 75% to near full density of 98% by hot rolling. Although electrical conductivity and microhardness increase in both Cu-Cr and Cu-Cr-CNT nanocomposites after hot rolling, the effect of hot rolling on the enhancement is more prominent in the presence of CNTs. The microhardness and electrical conductivity of hot-rolled Cu-Cr-CNT nanocomposite approach HV 175 and 68% (IACS), respectively. Also, hot rolling is more effective on thermal stability improvement of Cu-Cr-CNT nanocomposite compared to Cu-Cr composite. However, after hot rolling, both the friction coef?cient and wear loss of the Cu-Cr sample display higher reduction than those of Cu-Cr-CNT nanocomposite owing to different wear mechanisms. After hot rolling, friction coefficient and wear loss of Cu-Cr sample display variation of 25% and 62%, respectively.
Key words: Cu-Cr; carbon nanotube; nanocomposite; hot rolling
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9