ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 29    No. 7    July 2019

[PDF]    [Flash]
Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys
Yuan-kui CAO, Yong LIU, Bin LIU, Wei-dong ZHANG, Jia-wen WANG, Meng DU
(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
Abstract: Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behavior of three alloys with compositions of TiNbTa0.5Zr, TiNbTa0.5ZrAl and TiNbTa0.5ZrAlMo0.5, and the effects of alloying elements were discussed. Results indicated that the oxidation rates of the TiNbTa0.5Zr and TiNbTa0.5ZrAl alloys are controlled by diffusion, and obey the exponential rule. However, the oxidation rate of the TiNbTa0.5ZrAlMo0.5 alloy is controlled by interface reaction, and obeys the linear rule. The addition of Al leads to a better oxidation resistance by forming a protective oxide scale. However, the protection of Al-rich scale is weakened by the addition of Mo. Extensive pores and cracks occur in the oxide scale of the TiNbTa0.5ZrAlMo0.5 alloy, resulting in a significant decrease in oxidation resistance.
Key words: high entropy alloy; refractory metal; high temperature oxidation; oxide scale; microstructure
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9