Induced antibacterial capability of TiO2 coatings in visible light via nitrogen ion implantation
(1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
2. College of Materials Science and Opto-Electronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
2. College of Materials Science and Opto-Electronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: In order to enhance the antibacterial ability of titanium components, an antibacterial coating was fabricated on Ti surface by micro-arc oxidation (MAO) and further nitrogen plasma immersion ion implantation (N-PIII). The XPS spectra demonstrated that nitrogen was incorporated into TiO2 coatings by N-PIII and the nitrogen content on the surface of TiO2 coatings increased as the N-PIII time increased. Nitrogen-incorporated samples exhibited remarkably increased absorbance in the visible region and the light absorption edge of nitrogen-incorporated samples showed a redshift compared to MAO samples. Escherichia coli and Staphylococcus aureus were seeded on the samples to assess their antibacterial ability. The bacterial experiment demonstrated that nitrogen-incorporated TiO2 could effectively reduce the bacterial viability in visible light. Thus, the antibacterial TiO2 coatings fabricated by MAO and further N-PIII might have large potential in the medical and marine fields.
Key words: TiO2; micro-arc oxidation; nitrogen ion implantation; antibacterial capability