ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 30    No. 1    January 2020

[PDF]    [Flash]
Induced antibacterial capability of TiO2 coatings in visible light via nitrogen ion implantation
Li ZHENG1,2, Shi QIAN1, Xuan-yong LIU1,2
(1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
2. College of Materials Science and Opto-Electronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
)
Abstract: In order to enhance the antibacterial ability of titanium components, an antibacterial coating was fabricated on Ti surface by micro-arc oxidation (MAO) and further nitrogen plasma immersion ion implantation (N-PIII). The XPS spectra demonstrated that nitrogen was incorporated into TiO2 coatings by N-PIII and the nitrogen content on the surface of TiO2 coatings increased as the N-PIII time increased. Nitrogen-incorporated samples exhibited remarkably increased absorbance in the visible region and the light absorption edge of nitrogen-incorporated samples showed a redshift compared to MAO samples. Escherichia coli and Staphylococcus aureus were seeded on the samples to assess their antibacterial ability. The bacterial experiment demonstrated that nitrogen-incorporated TiO2 could effectively reduce the bacterial viability in visible light. Thus, the antibacterial TiO2 coatings fabricated by MAO and further N-PIII might have large potential in the medical and marine fields.
Key words: TiO2; micro-arc oxidation; nitrogen ion implantation; antibacterial capability
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9