ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 30    No. 6    June 2020

[PDF]    [Flash]
Fabrication of lotus-type porous Mg-Mn alloys by metal/gas eutectic unidirectional solidification
Can-xu ZHOU1, Yuan LIU1,2, Hua-wei ZHANG1,2, Xiang CHEN1,2, Yan-xiang LI1,2
(1. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
)
Abstract: Lotus-type porous Mg–xMn (x=0, 1, 2 and 3 wt.%) alloys were fabricated by metal/gas eutectic unidirectional solidification (the Gasar process). The effects of Mn addition and the fabrication process on the porosity, pore diameter and microstructure of the porous Mg-Mn alloy were investigated. Mn addition improved the Mn precipitates and increased the porosity and pore diameter. With increasing hydrogen pressure from 0.1 to 0.6 MPa, the overall porosity of the Mg-2wt.%Mn ingot decreased from 55.3% to 38.4%, and the average pore diameter also decreased from 2465 to 312 μm. Based on a theoretical model of the change in the porosity with the hydrogen pressure, the calculated results were in good agreement with the experimental results. It is shown that this technique is a promising method to fabricate Gasar Mg–Mn alloys with uniform and controllable pore structure.
Key words: porous material; Mg-Mn alloy; porosity; Gasar process; directional solidification
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9