ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 23    No. 3    March 2013

[PDF]    [Flash]
Theory analysis and vestigial information of surface relaxation of natural chalcopyrite mineral crystal
Shu-ming WEN, Jiu-shuai DENG, Yong-jun XIAN, Liu DAN
(Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China)
Abstract: X-ray diffraction was used to measure the unit cell parameters of chalcopyrite crystal. The results showed that the chalcopyrite crystal is perfect, and the arrangement of its atoms is regular. A qualitative analysis of molecular mechanics showed that surface relaxation causes the chalcopyrite surface to be sulfur enriched. Atomic force microscope (AFM) was used to obtain both a microscopic three-dimensional topological map of chalcopyrite surface and a two-dimensional topological map of its electron cloud. The AFM results revealed that the horizontal and longitudinal arrangements of atoms on the chalcopyrite surface change dramatically compared with those in the interior of the crystal. Longitudinal shifts occur among the copper, iron and sulfur atoms relative to their original positions, namely, surface relaxation occurs, causing sulfur atoms to appear on the outermost surface. Horizontally, AFM spectrum showed that the interatomic distance is irregular and that a reconstruction occurs on the surface. One result of this reconstruction is that two or more atoms can be positioned sufficiently close so as to form atomic aggregates. The lattice properties of these models were calculated based on DFT theory and compared with the experimental results and those of previous theoretical works. On analyzing the results, the atomic arrangement on the (001) surface of chalcopyrite is observed to become irregular, S atoms move outward along the Z-axis, and the lengths of Cu—S and Fe—S bonds are enlarged after geometry optimization because of the surface relaxation and reconstruction. The sulfur-rich surface and irregular atomic aggregates caused by the surface relaxation and reconstruction greatly influence the bulk flotation properties of chalcopyrite.
Key words: chalcopyrite; surface relaxation; reconstruction; sulfur-rich surface
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9