ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 23    No. 4    April 2013

[PDF]    [Flash]
Mechanisms of surface charge development of serpentine mineral
Bo FENG, Yi-ping LU, Qi-ming FENG, Peng DING, Na LUO
(School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)
Abstract: The electrokinetic behavior and surface dissolution of serpentine mineral were studied through Zeta potential measurements, dissolution experiments and X-ray photoelectron spectroscopy. The results show that serpentine has an iso-electric point (IEP) of 11.9, which is higher than that of other phyllosilicate minerals. Dissolution experiments show that the hydroxyl is easy to dissolve with respect to the magnesium cations in the magnesium oxide octahedral sheet. As a result of hydroxyl dissolution, the magnesium ions are left on serpentine surface, which is responsible for serpentine surface charge. The removal of magnesium ions from serpentine surface by acid leaching results in a decrease of serpentine IEP. Therefore, it has been clearly established that the surface charge developed at the serpentine/aqueous electrical interface is a function of the serpentine surface incongruent dissolution.
Key words: serpentine; magnesium ions; hydroxyl; surface charge; incongruent dissolution
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9