ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 30    No. 11    November 2020

[PDF]    [Flash]
Microstructure and high-temperature mechanical properties of near net shaped Ti-45Al-7Nb-0.3W alloy by hot isostatic pressing process
Hui-zhong LI1,2,3, Yi-xuan CHE1, Xiao-peng LIANG1,2,3, Hui TAO1, Qiang ZHANG1, Fei-hu CHEN1, Shuo HAN1, Bin LIU2
(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
3. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
)
Abstract: Near net shaped Ti-45Al-7Nb-0.3W alloy (at.%) parts were manufactured by hot isostatic pressing (HIP). The microstructure and high-temperature mechanical properties of the alloy were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that at a temperature of 700 °C, the peak yield stress (YS) and ultimate tensile stress (UTS) of alloy are 534 and 575 MPa, respectively, and the alloy shows satisfactory comprehensive mechanical properties at 850 °C. The alloy exhibits superplastic characteristics at 1000 °C with an initial strain rate of 5×10-5 s-1. When the tensile temperature is below 750 °C, the deformation mechanisms are dislocation movements and mechanical twinning. Increasing the tensile temperature above 800 °C, grain boundary sliding and grain rotation occur more frequently due to the accumulation of dislocations at grain boundary.
Key words: TiAl alloy; near net shape; powder metallurgy; high-temperature mechanical properties
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9