ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 31    No. 6    June 2021

[PDF]    [Flash]
Strength prediction of multi-layered copper-based composites fabricated by accumulative roll bonding
P. SEIFOLLAHZADEH, Morteza ALIZADEH, M. R. ABBASI
(Department of Materials Science and Engineering, Shiraz University of Technology, Modarres Blvd., 71557-13876, Shiraz, Iran)
Abstract: This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding (ARB), and to analyze the tensile properties and electrical conductivity of the produced composites. A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites. It was found that by progression of ARB, the experimental and calculated tensile strengths are enhanced, reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB, respectively and then are reduced. The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles, but the decrease was intensified at the final ARB cycles. In conclusion, the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized.
Key words: multi-layered composites; accumulative roll bonding; strength prediction; hardness; X-ray diffraction
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9