ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 32    No. 10    October 2022

[PDF]    [Flash]
Grain refinement of Mg-Al binary alloys inoculated by in-situ oxidation
Heng-bin LIAO1*, Li-ling MO1*, Cheng-bo LI1,2, Mei-yan ZHAN1, Jun DU1
(1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
2. School of Materials and Environment, Guangxi University for Nationalities, Nanning 530006, China
)
Abstract: Utilizing oxide inclusion to induce heterogeneous nucleation event is an available method to achieve grain refinement. In this study, Mg-Al binary alloys were refined by inoculation of in-situ oxidation process. Results show that MgO and MgAl2O4 phases are primary oxide products for Mg-xAl alloys inoculated by in-situ oxidation. For pure Mg and Mg-1Al alloy, MgO is the only oxide product. MgAl2O4 is another oxide product for Mg-xAl alloy as Al content increases to 3 wt.%. For Mg-3Al alloy, average grain size significantly decreases from 1135 to 237 mm, with a high grain refining ratio of 79.1%. Both MgO and MgAl2O4 possess nucleating potency for α-Mg grain. MgAl2O4 exhibits a higher nucleating potency due to the lower misfit with α-Mg. The grain refinement of Mg-xAl alloys inoculated by in-situ oxidation process is attributed to heterogeneous nucleation events of α-Mg grains on MgO or MgAl2O4 particles.
Key words: Mg-Al alloy; grain refinement; heterogeneous nucleation; MgO; MgAl2O4
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9