ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 22    No. 10    October 2012

[PDF]    [Flash]
Preparation, microstructure and dislocation of solar-grade multicrystalline silicon by directional solidification from metallurgical-grade silicon
SU Hai-jun, ZHANG Jun, LIU Lin, FU Heng-zhi
(State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China)
Abstract: A vacuum directional solidification with high temperature gradient was performed to prepare low cost solar-grade multicrystalline silicon (mc-Si) directly from metallurgical-grade mc-Si. The microstructure characteristic, grain size, boundary, solid-liquid growth interface, and dislocation structure under different growth conditions were studied. The results show that directionally solidified multicrystalline silicon rods with high density and orientation can be obtained when the solidification rate is below 60 μm/s. The grain size gradually decreases with increasing the solidification rate. The control of obtaining planar solid-liquid interface at high temperature gradient is effective to produce well-aligned columnar grains along the solidification direction. The growth step and twin boundaries are preferred to form in the microstructure due to the faceted growth characteristic of mc-Si. The dislocation distribution is inhomogeneous within crystals and the dislocation density increases with the increase of solidification rate. Furthermore, the crystal growth behavior and dislocation formation mechanism of mc-Si were discussed.
Key words: multi-crystalline silicon; metallurgical-grade silicon; silicon solar cell; directional solidification; microstructure
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9