ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 24    No. 2    February 2014

[PDF]    [Flash]
Thermal-hydro-mechanical coupling stress intensity factor of brittle rock
Peng LI1, Qiu-hua RAO1, Zhuo LI1, Jing JING2
(1. School of Civil Engineering, Central South University, Changsha 410075, China;
2. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
)
Abstract: A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula.
Key words: stress intensity factor; thermal-hydro-mechanical coupling; boundary collocation method; fracture mechanism; brittle rock
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9